Morgellons : An International Presence


An International Presence


Clifford E Carnicom

Aug 10 2016

In an effort to provide continuing documentation of the Morgellons condition, the following images are provided.   The magnification of the series progresses from approximately 100x to 5000x. The samples originate from the scalp of an individual and multiple examples have been provided under clean and controlled conditions.  The network of filaments, although compact and dense, is completely commensurate with previous samples that have been examined over the years.

The filament networks taken from the skin of the affected individual come from a person that resides in France.  Overwhelming evidence continues to mount that the source of the condition is environmental  in nature, origin and distribution. This most recent example demonstrates the international scope of the this continuing and unaddressed public health issue.


Low power image (top lit) of a representative filament network taken from the skin of the individual.  The sample, in general, is difficult to image because of the density of the network.  The samples measure approximately 1 mm in length.  Various microscopy configurations have been used to collect these images. 

Magnification approx. 100x.


A silhouette view on the edge of the filament network.

Magnification approx. 350x.


First level of internal detail of filament network becomes visible.

Magnification approx. 1500x.


The complex internal nature of filament network is revealed.  Extensive discussion on the internal structure of the filament form of growth exists on this site.

Magnification approx. 5000x.

Secondary Rainwater Analysis : Organics & Inorganics

Secondary Rainwater Analysis :
Organics & Inorganics

Clifford E Carnicom
Nov 04 2015


A second rainwater sample has been evaluated. On this occasion, both organic and inorganic attributes of the sample have been examined.  Although the sample investigated is of much larger volume, the results demonstrate an essentially equivalent level of aluminum present to that defined within the earlier report, i.e., approximately 2 PPM.  This magnitude exceeds the US Environmental Protection Agency recommended standards for aluminum in drinking factor by roughly a factor of 10. 

In addition, various organic attributes of the sample are introduced within this report.


 Concentrated Rain Sample under Study in this Report
Distilled Water Reference on Left, Concentrated Rainfall to Right

Residual Solid Materials from the Rainwater Sample of this Study

The volume of the sample collected is approximately 6.5 liters over a three day heavy storm period, collected in clean containers that are were exposed to open sky.  The sample was concentrated by evaporation under modest heat to approximately 6% of the original volume.  It is apparent from visual inspection and by visible light spectrometry that the concentrated rainfall sample is not transparent and that it does contain materials to some degree.

Visible Light Spectrum Rainfall2

Visible light spectrum of the concentrated rainfall sample.  The increase in absorption in the lower ranges of visible light correspond to the yellow and yellow-green colors that are observed with the sample.
The pH of the concentrated sample is recorded at 8.5; this value is surprisingly alkaline and indicates the presence of substantial hydroxide ions in solution.  The pH of the solution prior to concentration measures at 7.5; this also must be registered as highly alkaline under the circumstances.

The pH of  ‘natural’ rain water has been discussed in earlier papers and its relationship to the expected value of 5.7 due to the presence of carbonic acid in the atmosphere (carbon dioxide and water).  The departure of natural rainwater from the theoretical neutrality of 7.0 is one aspect of the pH studies that I conducted in conjunction with numerous citizens across the nation some years ago, and these reports remain available.  The current finding is remarkably alkaline and, by itself, is indicative of fundamental acid-base change in the chemistry of the atmosphere.

From those early reports, it may be wise to recall the words of Paul Crutzen, Nobel Prize winner for Chemistry (Atmosphere, Climate and Change, 1995), who stated that the most important chemical attribute of precipitation is indeed the pH value.  It behooves us, as a species, to act rather quickly on any reasonable claim to a significant change in fundamental atmospheric chemistry that may exist.  It must be acknowledged that these same claims now prevail over decades of time, and that any dismissal as an aberration of no consequence is unjustifiably diminutive.

The sample has been examined again for the existence of trace metals using the method of differential cyclic chronopotentiometry, as described in the earlier report. The results are essentially identical to that of the earlier report, and once again the signature of a soluble form of aluminum is detected . The sample in this case, however, is of much larger volume, was collected over a longer duration, and was more highly concentrated that that in the preliminary report.

The concentration level was again determined, and the analysis indicates a level of soluble aluminum within the rainwater sample at 2.0 PPM.  This compares quite closely with the earlier sample result of approximately 2.4 PPM . This determination once again takes into account the concentration process that has been applied to the sample for testing sensitivity purposes.

Two facts bear repeating here:

First, this value exceeds the US Environmental Protection Agency (EPA) standards for drinking water by roughly a factor of 10, again using the most conservative approach possible that can be taken.

Second, the previously referenced U.S. Geological Survey statement from the year of 1967 is valuable both in relation to evaluating the EPA standards as well as assessing the expectations of aluminum concentrations in natural waters:


There is now a necessity to include an additional aspect of the rainfall analysis that has made its presence known more clearly.  This is the case of biologicals.  It is a fact, that in addition to the repeated detection of a trace metal at questionable levels, certain organic constituents are coming to the fore.   The test results are repeatable at this point and these organics will eventually require an equal accounting for their existence.  I will not enter into an extended discussion of their potential significance at this time, as the first and necessary step is to place on the table that which must be confronted.  My introductory suggestion at this point is to become aware of a previous paper on this site, entitled “A New Biology” to gain some familiarity with the scope of the issue . It is fair to say that along with changes of chemistry in this planet, we must also confront certain changes in biology that are in place.  The history of this planet, the cosmos, life and our own species is dynamic, and intelligence itself is partially expressed in the ability to adapt to changing circumstances.  We are in the process, whether we like it or not, of learning if and how quickly we can adapt to changes that have and are taking place, induced or otherwise.  We may also choose whether to participate in the process (hopefully for the betterment of the world, as opposed to its detriment), or if we shall remain ignorant in an effort to ensconce ourselves in a purported comfort zone.

The methods of examination to be presented here are twofold: that of microscopy and that of infrared spectroscopy.  Here are some some images that relate to the fact of the matter; they are repeated in both samples that have been examined:


Low Power (~200x) of Biological Filaments Contained in
Residual Materials from Concentrated Rainwater Samples
(The colors of the filaments are a unique characteristic (commonly red and blue) and they exist as an aid to identification with low power microscopy)


High Power (~5000x) of Biological Filaments Contained in
Residual Materials from Concentrated Rainwater Samples

These images will not be elaborated on in detail at this time, as it may require a period of time to examine the information that has come forth here.  They most certainly indicate a biological nature that shares a common origin with many of the research topics that have evolved on this site over the years.  It may be worthwhile to begin by becoming familiar with the ‘environmental filament’ issue that is so thoroughly examined on this site.  Since it seems clear that we are indeed dealing with an ‘environmental contaminant’ of sorts, the history of communication with the U.S. Environmental Protection Agency may also be worthy of review.

It would also seem to be the case that a significant portion of the residual material is inorganic as well, as in an insoluble metallic form.  It may be that the insoluble residual material may be composed in part as an organometallic complex, based upon historical findings.

Regardless of the source or impact of these materials, it does seem to fair to state that an accounting for their existence in the atmosphere and rainfall is deserved.  Each of us may wish to play a part in seeking the answers to such issues and questions before us all.  I wish for this to happen, as I suspect many of us know that it is the right thing to do.


Clifford E Carnicom
November 01, 2015.

Born Clifford Bruce Stewart
January 19, 1953.

CDB: Growth Progressions

CDB : Growth Progressions

Clifford E Carnicom
Jun 13 2014

Note: I am not offering any medical advice or diagnosis with the presentation of this information. I am acting solely as an independent researcher providing the results of extended observation and analysis of unusual biological conditions that are evident.  Each individual must work with their own health professional to establish any appropriate course of action and any health related comments in this paper are solely for informational purposes and they are from my own perspective.

This paper will outline specific, identifiable and repeatable growth stages of the cross-domain bacteria (CDB) and its associated forms.  It will be seen that a wide variety of growth forms will ultimately emerge from what appears to be a simple, non-descript spherical living entity; as such the term ‘pleomorphic’ is fully justified in this presentation.  This is the case even when the study is restricted to the most primitive form of existence (i.e., the CDB) and this sets the stage to for us anticipate a high level of survivability and adaptability for the organism.  Thus far, this has certainly been proven to be the case, as the means to eradicate or destroy the organism in any meaningful way appears to be unavailable under the current state of knowledge.

The outline of presentation is based primarily upon chronology.  The simpler and more primitive states of existence will be introduced first; these will  be followed by more complex or advanced stages of growth.  In general, the time period of examination here covers up to approximately two months of time under controlled culture conditions.  It is understood that abundant reports of even more diverse and less understood growth formations exist, and those studies await us by the moment.  The objective here, however,  is to introduce in a systematic way that which can be replicated and documented under known conditions.

CDB - Primitive Form

CDB – Primitive Form
Original Magnification Approx. 5000x

This image above represents the basis of all subsequent work here.  It is an explicit image of the cross-domain bacteria (CDB) themselves, as the term has been tentatively adopted by this researcher.  The evolution of that terminology, along with the rationale for its use, has been described in greater detail within the paper entitled Cross-Domain Bacteria Isolation (Mar 2014).  The terminology, as expressed, is not intended to be restrictive in any sense and future discretions should and will allow this terminology to modify itself should circumstances and knowledge dictate.  What has been done is to introduce and force into the discussion a reference point from which earnest discussion and progress in the scientific community, and in society as a whole, can be made.  Fair-minded terminology at this stage of waiting (i.e, more than a decade) does not restrict us; in contrast, it will force us to discover what is true or not.  If the educated propositions turn out to be incorrect and require revision so be it; we will ultimately be the better for it as it means that the actual progress that is required and overdue will have been made. The process of CDB isolation is also described in more detail in that same paper.  

The above image is a clear and unhindered presentation of the CDB as they have been isolated.  They are visually not of dramatic form or impact and they could easily be passed over as one of the nuances of the microscopic world.  As in the case of the filament studies described exhaustively on this site, however, there appears to be an important story and set of events that are held within the simplistic structure above and it is our duty to make these characteristics, behaviors and capabilities known.  It is not an overstatement to say that such advanced knowledge appears to be at the heart of understanding the changes in biology now underway on this planet and that we should make haste and be earnest in the pursuit of it.

CDB Cellular Division Captured

CDB Cellular Division Captured

CDB Cellular Division Captured.  Two Hour Time Interval.
Original Magnification Approx. 5000x

The photograph above is an important one and it has been difficult to capture.  The existence of this image makes the case for a form of reproduction and growth that is understood and accepted within conventional biology, i.e., cell division.  All efforts to understand the nature of this organism are to be based upon such conventional knowledge, reason and processes unless the circumstances or situation requires otherwise.  Any observations or processes that fall within conventional reference frames of knowledge of science will allow certain assumptions to be more readily considered and they will act as a governor to unwarranted or disproven speculative discourse. If the situation requires an extension of our creative and imaginative talents they will be employed, but not without due and fair consideration to the eons of effort and hard work that has been given to us by our scientific predecessors.  The issue of artificial constructive devices to growth are not required at this point based upon the demonstration of cellular division above; all evidence collected to date continues to support the argument for a living organism operating under the framework of known biology.  This biology may hold numerous surprises for us and they may well involve processes of manipulation (e.g., human, genetic, engineering, etc.) but any such proclamations will need to be supported by rational and convincing scientific presentation.  The unknowns here obviously are many, and it is to our advantage to use known science to understand and interpret our discoveries instead of imaginative discussion that can lead to confusion and misinformation and that causes more harm than good.

What are the known methods of reproduction?  How does the above observation fit within that spectrum?  Is the observation above consistent with the primitive form designated as a “cross-domain bacteria“?

The perpetuation of life is based upon the reproduction of cells, or cell division1.

Two types of cells exist : prokaryotic and eukaryotic.  Prokaryotes are non-nucleated and, in general, single celled organisms but there are some exceptions such as cyanobacteria and  myxobacteria.  The prokaryotes include the bacteria and archaea domains of life; these domains have been introduced elsewhere on this site (see Morgellons : A New Classification (Feb 2010)).  

Eukaryotes are nucleated and contain organelles within the cell and are therefore generally more complex in nature.  Eukaryotes include all life except the prokaryotes, such as plants, animals, fungi, algae, and protists (most protists are unicellular and all are eukaryotes).  

We can see that classification systems themselves have their own complications, and these difficulties were undoubtedly a driving force toward the three-domain system developed by Carl Woese in 1978 (as referenced in the mentioned paper).  

Three types of cell reproduction exist : binary fission, mitosis and meiosis.  Binary fission, as the name implies, refers literally to the division of a single cell into two parts and is asexual.  Mitosis is the division of the nucleus2 and is also asexual.  Meiosis is also a process of nuclear division (sexual) that reduces the number of chromosomes in new cells to half the number in the original cells3.

For the current situation, we need to find what fits best with what is observed.  For the time being, this is binary fission, which happens to occur under the domains of the Bacteria and Archaea.  We have in our case an apparent single celled non-nucleated organism without organelles of an appropriate size that is splitting in two.  Again,  our discussion is restricted at this stage to the most primitive known form of the organism, i.e., the CDB.  The most common form of reproduction by bacteria is that of binary fission.  Additional arguments for the introduction of the cross-domain bacterial terminology (primitive form of the organism only) are substantial and they are outlined further in the Cross-Domain Bacteria Isolation paper.  In addition, a great deal more information has accumulated over history on the Bacteria vs. Archaea (5,000 – 15,000 species  vs. a few hundred; these represent a small fraction of the total thought to exist) and the Archaea domain itself is a relatively recent taxonomic creation.

Bacteria can also vary their state of existence and their genetic nature4 by a process known as recombination.  This comes in three forms : conjugation, transformation, or transduction.  Conjugation involves the transfer of genetic material between bacteria through a tubular physical connection.  Transformation involves the assimilation of DNA from the environment.  And lastly, transduction is an exchange of DNA through bacteriophages, a type of virus that is specific to bacteria.  The methods of observation for these advanced methods of alteration does not exist within the Institute at this time.  

Archaea also reproduce by binary fission, and they remain under consideration from that perspective as well as others.  As we shall see, the term “cross-domain” has been introduced specifically for the prospect of allowance, if not expectation, of sharing other significant attributes of the remaining domains of life.  This argument is presented in force within the Morgellons : A New Classification  paper referenced earlier.  The discussion before us will only become increasingly complex as we proceed, and it is the reason that the discussion and study remains so highly focused on this most primitive form of existence of the organism that has been identified to date.

Eukaryotes cells divide by the processes of mitosis and meiosis, which involve a nucleus within a cell.  At this point there is not the means or observational equipment to identify a nucleus within this primitive form (because of its size); in addition, an expanded discussion on the case for tentative bacterial classification (primitive form only) has already been made.  At the current level of knowledge, a binary fission characteristic of a prokaryote is sufficient and reasonable to propose as the the form of cell division for the CDB.  The photograph above provides further justification for this argument.


Linear Alignment Process Prior to Filament Formation

CDB – Linear Alignment Process Prior to Filament Formation
Original Magnification Approx. 5000x


The next photograph above ushers in an important transitional state, and this is the alignment of the individual cocci  into a linear arrangement.  The knowledge and observation of the transformation process towards the filament form is a crucial piece of information to acquire and this has now been captured on repeated occasions.  The specific process by which this alignment takes place is not known, however, it can be projected that biochemical charge dynamics could easily be at play here.

The term ‘self-assembly’ has certain connotations that may be helpful to discuss and elaborate upon.  The term ‘self-assembly’ is often used with that of an ‘artificial’ process implied, frequently to the point of insinuating robotic, engineered or mechanical methods in the ‘construction’ process.  If such mechanisms are observed and documented they will be reported on.  There is, however, a biochemical reference and interpretation for the term which is much closer at hand and that is more sensible and rational to introduce with the photograph above.  The vast majority of the dynamics of chemistry (and bio-chemistry, for that matter) is governed and determined by charges; i.e., the classic interaction between positive and negative charges that are at the very essence of dynamic interactions within the cosmos.  The understanding of the essence of those forces remains enough of a mystery to mankind,; we may not need to seek a human or ‘artificial’ construct to explain states of nature that are not completely understood by humans to begin with.  The explanation here may best be made with example and simulation (which, incidentally, has been helpful to my own understanding) as to what ‘self-assembly’ actually means from the conventional biochemical perspective.  The following demonstration that is available at the Concord Consortium replaces much of a verbal discussion with simple and observable dynamics; it is suggested that the reader become familiar with both the simplicity, magic and power of this process in nature.  Self-assembly is likely to become an important aspect of future research and discussion as it relates to the growth stages of this organism.

Visit the Concord Consortium to view the self-assembly simulation using the Molecular Workbench software (Java based).

Excerpts from a simulation of self-assemblage at the Concord Consortium
with the use of the Molecular Workbench Software.
(Link to the Concord Consortium here)

The forces at work in the ‘self-assembly’ discussed here are the fundamental attractive and repulsive forces of electrons and protons.  Since these forces drive the vast majority of chemical reactions and energy transfer within living organisms, it should not come as a surprise to us that we will encounter  this process in our future study.  Clearly, there remains much work to be done to identify the nature, location and driving mechanisms of any charge interactions and this research remains immediately before us.  With that knowledge also comes the prospect of interfering with those charge dynamics that are likely involved in the growth of the organism; this offers potential benefits that are not difficult to recognize.  In fact, there are numerous prospects for disruption and interference to the the life cycle of the organism, and the knowledge sought by this Institute and other researchers hopefully will be supported by those that understand these potential benefits.  

Electromagnetic studies of the CDB that are underway do indicate a possible separation of charge within cultures that are under investigation.  If this charge separation is verified there may be a relationship between this and the ‘assembly’ or alignment process that is shown above.


 Filament Development with Internal CDB

 Filament Development with Internal CDB
Original Magnification Approx. 5000x

The next stage of growth that is shown above represents an important transgression from the usual propagation of a bacteria within its own species.  We see in the case above that not only is there an alignment process that can take place;  there is also the development of a filament structure that eventually can encase the CDB and ultimately create a more complex and protective form of growth.  The CDB have shown themselves to be quite resistant to traditional methods of breakdown or disintegration; the appearance of a surrounding filament sheath makes this even more so.  It is not impossible for filaments to associate with bacterial development but it is not especially common.  It is for this and other reasons that the modifier and extension of  “cross-domain” has been added once we begin to examine beyond the primitive and original form of growth and existence.   CDB terminology is  proposed simply as a common reference point for discussion and further study and as the original, most primitive, known and identifiable form of existence for the organism. 

Let us start by identifying some of those cases where filaments are known to be associated with bacterial growth:

The first case that I am aware of that shares this property is that of some fossilized remains.  In Tortora’s Microbiology, An Introduction5, a photograph (copyright protected) of a fossilized filamentous prokaryote from western Australia that is 3.5 billion years old is shown.  We know, therefore, that filamentous prokaryotes can date back essentially to the origin of the earth.  Whether or not coccus forms can be seen internally in that particular case is a different matter, as the image of the remains is simply not of sufficient quality to determine this.

There is another novel case of filamentous bacteria found recently deep underground in a South African mine and this likely indicates an ancient origin as well.  Under more contemporary circumstances, the cyanobacteria  exist as a rather unusual class of “nonproteobacteria gram-negative bacteria”.  This group is unique in that they are morphologically and physiologically distinctive from other bacteria and their classification is based upon genetic origins per the breakthoughs by Carl Woese discussed in earlier papers.  They were once called blue-green algae but they are currently classified as bacteria, however, and they can exist in at least three different forms.  Photographs are, as usual, helpful to visualize the level of variance involved here:



filamentous cyanobacteria


The non-filamentous form of cyanobacteria. As this form of the bacteria is approximately 8-10 microns in diameter, it is clear that this remains a separate species from that under study. Image source :

The filamentous form of cyanobacteria.  This image shows that various bacteria can indeed develop into a filament form.  In addition, there appears what are called heterocysts (the larger and more circular cells) which are specialized for fixing nitrogen gas.  This type of variation can be important within the current studies as will be seen later within this paper. Image source :

This is the branching form of cyanobacteria.  Although the dimensions of this species are radically different from that of the CDB, the variation of form is nevertheless especially interesting and calls to attention the broad diversity of structure and form that can occur within the bacterial domain.  Image source :

There is also a case of a ‘sheathed’ bacteria that is interesting and potentially relevant to introduce.  The species is that of Sphaerotilus natus and it appears as follows:

Sphaerotilus natus

 Sphaerotilus natans bacteria.  This bacteria is rod shaped and, therefore, does not match the CDB in form as well as in size.  It is of interest, however, in the fact that it produces an enclosing sheath in which to live.  The sheaths are of a protective nature and it is thought that they aid in nutrient accumulation.  It also stains as Gram negative and has an alternative common name of “sewage fungus” as it is often found in sewage locales. Image source :


What we can see in these cases, therefore, is that the bacteria can actually vary fairly widely in their form and structure.  Some bacteria create filament structures, some create unique and specialized cells, and some rarely encase themselves in a protective sheath; these cases are exceptions to the rule but we see that they are possible and known to exist.  It certainly is more typical to regard filament structures and multi-celled structures as representative of the fungi and eukaryotes but that presumption must be reserved until additional information becomes available.   The lines of definition have already become blurred at this stage.  The introduction of genetic classification systems has radically altered our views that are based upon visible morphology and physiology.  We can see that the “classification of life” is under a state of continuous revision and that exceptions abound to the attempts that are made to place the biology of the planet into a set of tidy boxes.  The introduction of genetic manipulation by human beings has opened up its own Pandora’s Box in this regard, and it is unlikely that the classification systems of the past will ever entirely serve the complexities of our future.


Early Stages of Filament Development

Early Stages of Filament Development

 Early Stages of Filament Development with Internal CDB.  Development of reddish (probable protein aggregation) conglomerates along filaments.  Original Magnification Approx. 5000x.


The stage of growth shown above appears to be important in the development of structural mass for the organism.  In this case, additional material of a reddish-brown color can be seen to accumulate around and within the CDB-filament complex that precedes it.  The composition of this material is unknown at this time.  There is, however, a presumption in place that this material could easily be of a proteinacous nature.  The color of the material is also highly suggestive of an iron complex that is included; it is known that iron compounds eventually become a significant compositional compound of the organism growth.  This particular material is not especially reactive to hydrogen peroxide but further developments that are highly reactive to hydrogen peroxide will be described below.  A reasonable supposition, for the time being, is that this material may be dominated by the presence of an proteinaceous-iron complex.  It is also known from previous work and studies that the filaments themselves are most likely constructed largely of proteins, with keratin based materials as the strongest candidate.  In terms of function, it is reasonable that proteins will be a major component to the growth processes that are being recorded here.  The nature and identity of such proteins is a major pursuit of research for Carnicom Institute.


time lapse

 Time Lapse of CDB – Filament Growth Stage on Agar Culture
Original Magnification Approx. 500x


The animated image above represents a time lapse capture of the filament growth under relatively low magnification.  This particular growth has been recorded from an agar based culture.  The period of time covered by the time lapse movie is two hours and it is compressed into an interval of 40 seconds.  The growth appears to be uniform and  substantial.  The rate of growth for the organism at this stage and under these conditions is estimated at approximately 200 microns per hour.  This growth rate, if undisturbed and unrestrained, translates to approximately 5 inches in length per month of time under the conditions shown.  The impact of this type of growth within a suitable environment or within a host organism (e.g., a human body) is obviously of serious concern.  Any knowledge or or means to inhibit such growth can equally be of obvious benefit; it may be of interest and value for the health professions and communities to evaluate and further research the inhibition and mitigation strategies that have been developed within this site.


Agar Culture Vacuum Testing.

7 Days Filament Form

Agar Culture Vacuum Testing.
CDB readily progress to filament form directly.   Vaccum environment does not promote growth.

Agar Culture Growth Stage – Approx. 7 Days
Filament Form.


The images above are of agar culture trials and two points of interest, as a minimum, are demonstrated ..  The first is the development of cultures in a highly specific fashion that are essentially free from contamination of other organisms such as common molds and fungi.  This is the result of work and study that have gradually isolated  a set of conditions that are favorable for growth; these will be identified in greater detail within separate writing.  Many non-specific culture environments, both liquid and agar based, have been investigated and the results presented on the site over a period of many years.  One advantage of the current progress is that it allows for a more accurate assessment of the early growth processes that are specific to this particular organism.  It is expected that this process can and will be refined further as the research extends itself within the health professions and laboratory environments.

The second illustration is of the importance of both moisture and the atmosphere to the growth process.  Significant decreases in atmospheric pressure have been applied to the culturing process and in all cases a corresponding marked decrease in growth and proliferation is observed.  This leads us to understand that the composition of the atmosphere is, in some fashion, beneficial and important to growth.  The most obvious and likely beneficial candidates to consider here will be that of oxygen and nitrogen.  Additional work to be described further increases the evidence for favoritism towards an oxygen rich environment, but that result is not exclusive in any way to the potential importance or role of additional gases during growth.  

It should also be understood that a growth benefit is an entirely separate issue than that of a growth requirement.  The above information does not, in any fashion, demonstrate that the atmosphere is required for the existence or even perpetuation of the organism -only that it appears to be beneficial and favorable for growth or for growth to proceed more quickly.  As a matter of act, the evidence to date indicates that the organism can exist in stasis indefinitely under especially harsh or severe environmental conditions.  These conditions could well include that of a vacuum, a complete lack of moisture, and extremes in temperature.  The subject of exobiology may ultimately be relevant to this discussion as there remain many unknowns as to what that final limiting environment may be.  Readers may wish to investigate the topic of the attempted destruction of microorganisms and how it relates to our own space exploration programs from earth.  It may be a surprise to learn how ‘hardy’ life has shown itself to be and even the role of humans themselves in ‘seeding’ the cosmos, let alone studying the prospect of cosmic intrusion of life forms onto and into this planet.   Ames Research Center, as one of the early visitors to the body of research here, may be a place to start the inquiry.  There is, obviously, room for discussion on these subjects and on the origins of life in general.  It is probably of benefit to us a species that we no longer regard the theories of panspermia as being novel.


 Advanced Filament Form

 Advanced Filament Form
 Advanced Filament Form  Advanced Filament Form

 Advanced Filament Form – Cellular Production.  Cells amass additional CDB within.  Also note the CDB saturated filament form in addition to cellular production.  Sheathed bacterial forms, heterocytes and ‘erythrocytic‘ related formations are under current consideration.  All possibilities that provide for a transition from an apparent single-celled organism to a multi-cellular organism will be considered in the study process.
Original Magnification Approx. 5000x.


The images above show a series of remarkable developments that take place; it is at this point that the conventional boundaries of growth become radically challenged.  What occurs, in general, is the transformation from an apparent single celled primitive form (CDB) to a multi-celled organism that demonstrates increasingly sophisticated growth forms and specialization.  Many important unknowns immediately make their presence with the transformations that are shown above.  

It is possible that we still remain in the domain of the heterocyst and the cyanobacteria, as it has been introduced, earlier in this paper.  Certainly the variation in form of the cyanobacteria is a remarkable and unusual case in the study of bacterial evolution; we must recall that they were once called ‘blue-green’ algae in a period of earlier understanding.  In either case, it can be seen that the case of the cyanobacteria required specialized and extensive study to account for the morphological changes, not the least of which required a knowledge of its genetic origin.  It is expected to be no different in the case of the CDB, as the mysteries within are not likely to be evident from any conventional or external study.  There is only so far that we will be able to go with the microscope.  

What is shown above appears to be more than the case of a heterocyst.  We also can recognize that there may be some similarities, however, so it is in our interest to understand the function and nature of the heterocyst.  The primary function of the heterocyst (a specific form of cell development that is apparently unique to cyanobacteria) is to fix, or utilize, nitrogen.  Nitrogen fixation is a process whereby a cellular form uses nitrogen from the atmosphere and converts it to ammonium that the organism can then use for nourishment.  Nitrogen fixation is a definite field of study that is immediately germane to the investigations underway with the CDB.  We recall from the vacuum studies mentioned above that both nitrogen and oxygen are at the forefront of nutrient investigation and they are of equal interest.  Therefore, the creation of a specialized cell for the purpose of nitrogen fixation does exist as a distinct and real possibility.  The following two points are also of high interest with regard to the development shown above:

1.  All of the nitrogen-fixing organism are prokaryotes, i.e., bacteria6.  This fact increases the interest and attention on the primitive form (i.e., CDB) as having a core of origin within the bacterial domain.

2.  It is of special interest to note that iron-protein complexes (ferridoxins), in light of the previous statements made, play an essential role in the nitrogen fixation process by bacteria.  Readers may recall that iron-sulfur proteins have been introduced as a subject for further study within earlier research papers.

It does seem, however, that there are also some complications to this singular focus, based upon what we see and what is known about CDB behavior.  The function, capability and form of the heterocyst does not appear to be sufficient to explain all that is observed as well as the subsequent development of the organism.  The function of nitrogen fixation, however, could certainly be implicit within the transformations that are shown above.  At this time, there simply remains no known visual documentation of the growth process that is shown above.   

It also appears that the heterocyst is a specialized cell that develops separately and distinct from the non-filamentous cyanobacteria form.  In our case, the three different entities:  CDB, filament, and cellular construct, all seem to be joined and intermingled in about any way that is conceivable.  In the case above, the filament has become densely packed with the CDB.  In the live view of this particular case, the CDB were so numerous as to form a ‘river’ or a ‘stream’ of continuous and flowing CDB within the filament.  Subsequently what we see is the filament forming internal cellular divisions across its length.  These cellular divisions eventually segregate from the filament  in essentially perfect circular form.  It will then be seen that the separated circular cells are in turn themselves densely packed with the CDB, where they continue to develop and and presumably accomplish additional function at a more sophisticated level.  It should also be understood that the images above are not a normal and daily occurrence of development; they required protracted and difficult culture circumstances to develop.  Any casual study made of the organism would not likely even reveal the potential, let alone the expression of the growth forms that have been documented above.

We must also, at this point, introduce the uncanny similarity and potential relationships to the ‘erythrocytic’ forms that have been repeatedly presented on this site within in earlier work (e.g., see “Blood Issues Intensify“, Apr 2009 and “Morgellons : 5th, 6th & 7th Match“, Jan 2008, “Artificial Blood?“, Aug. 2009).  Any possible association between the unusual imagery immediately above with that of earlier work shown immediately below is not to be ignored.  Let us recall some of that early work with the limited imaging equipment that was available at the time.  It should also be realized that the culture methods employed in that work differ from the methods under current use and that the issue of pleomorphism, as it can be aptly demonstrated, must be taken into account with any comparisons that we can make from the limited knowledge base that is available to us.


Filament - Erythrocyte

Filament - Erythrocyte

Filament - Erythrocyte

Filament - Erythrocyte

 2008-2009 Filament – Erythrocyte Research Images.

Biconcavity visible in top right and lower left photos. Earlier tests for hemoglobin within these previous cultures produced a positive presumptive result by two different methods in addition to visual analysis and measurement. Image at lower right is of human erythrocytes subjected to the Gram stain process; excessive CDB are within. Please refer to earlier referenced papers for the details of those studies.  Limited CCD imaging capability – Original magnification approx. 9000x.




Enlargement of cellular structure (“heterocyte” – see below) after separation from filament transformations and as based upon the current culture work (2014 : shown above).  Similarity to “erythrocytic” forms as shown in 2008 – 2009 work is evident.  Cellular structure is embedded with CDBs similar to human erythrocyte documented above (post Gram stain process).  Original magnification approx. 5000x.

Reconstituted “erythrocytic” structure as described in the August 2009 paper entitled “Artificial Blood?”.  The similarity of size, shape, form and presence of CDB within to that of the current culture developments is evident and remarkable.
Original magnification approx. 5000x.

Human blood cell (erythrocyte) that demonstrates cellular and membrane damage from CDB (red arrows) adhesion and intrusion. Image excerpted from “Advances in Microscopy“, (Nov. 2013).  Original magnification approx. 12,000x.


Studies to investigate any potential relationships between heterocysts, “erythrocytic” forms and hemoglobin tests will continue with respect to this novel life form and organism.  During this interim of understanding, I shall refer to the unique cellular formation from the CDB as a “heterocyte” (i.e., as in a different, or other cell, and as opposed to heterocyst).  It is now clear that these cells originate from the CDB and the term CDB heterocyte may also be used during this research stage.


Advanced filament form

Advanced filament form

Advanced filament form

Advanced filament form

Advanced filament form

Advanced filament form – reddish aggregation (probable protein nature) with internal CDB and cellular production.  Lower image shows combination of primitive CDB-filament form, larger filament dominated by streaming CDB and external cellular development.  Original Magnification Approx. 5000x


From this point on there appears to be increasing variability in the forms of growth that can be assumed by the organism.  The CDB and the heterocytes appear to be at the root of each of these forms that subsequently develop and they remain, therefore, at the core of study. Some of the variations shown are repeatable and controllable; others are incidental and the conditions only partially defined.  The combination of all circumstances shown above observed in a single session is more akin to the latter; the heterocyte cellular division from the filaments remains as a rare event thus far.  In the filaments shown within these images the densely packed streaming and flowing version of the CDB does occur.  This has been recorded on more than one occasion and it represents massive CDB production within the filaments.  Heterocyte production within a filament appears to be enhanced under these concentrated CDB conditions; the heterocytes can be seen as units of division and development within the second row of the image set.  What also makes this observation group unusual is the appearance of an enclosing sac which then itself contains a cluster of heterocytes.  This can be seen most clearly in the right photograph of the second row.  There is reason to believe, as mentioned before, that this reddish-brown material (most clearly demonstrated in the top left image) may well be an iron-protein complex.  Work will continue on identifying the nature of the various forms and substrates that are being observed.  The bottom image contains a representative cross section of various forms within one image: a primitive filament enclosing a single linear array of the CDB, a larger branching filament filled with concentrated and streaming CDB, a few isolated CDB in the interstitial space, and an isolated heterocyte in the lower left of the image.  In the main, the patterns of growth are highly repeatable and identifiable, especially those that involve the CDB, the encasing filament structures and the production of the heterocytes.


blue compound

blue compound

A blue compound that forms in combination with CDB cultures and growth forms.  This compound has a direct affinity for oxygen; spherical structures in both images are oxygen pockets within an electrolysis culture.  Notice that both red and blue hues are common with advanced filament production, especially those associated with skin growth samples.
Original Magnification Approx. 5000x


The images above will be provided primarily as a matter of record while the phenomena is studied further.  The case above falls within a culture that was subjected to electrolysis.  Significant efforts have been extended to include a series of electromagnetic investigations upon growth behavior; these studies will need to be developed and presented in future days.  For now, the immediate observation to record is that of an apparent preference by the CDB for an oxygen rich environment; this has been demonstrated by a migration of the CDB to the anode during electrolysis tests.  It is a curious affair that the rich blue compounds were intermittently observed during this same period of testing.  It is quite possible that oxygen pockets or bubbles are an important part of the process and color formation.  There is also an interest in any role that copper (as well as other metals) may play within the growth process.  This issue will simply be revisited as circumstances permit; the apparent preference for an oxygen rich environment will be discussed further in the more immediate future.



Hydrogen Peroxide Reaction Original Magnification

CDB – Advanced Culture Development

Gel Diameter Approx. 6 cm.

Hydrogen Peroxide Reaction with Gel
Magnification Approx 200x 

Original Magnification Approx. 5000x 

The final set of observations here record the culmination of culture studies over an extended time period.  These results are biologically impressive but potentially quite dangerous  because of the scale of growth.  The photo on the left is the final stage of a liquid broth culture that was allowed to mature for approximately one month.  This culture did progress with the onset of CDB growth and was followed by filament growth as it has been aptly demonstrated throughout this paper.  At the more mature stage of growth, a gel like material formed at the top of the culture and is shown on a watch glass.  The amount of sheer mass here is of consequence; what is shown is growth on on the order of inches rather than the customary microns or nanometers that are involved at the origin.  Readers may wish to recall the time lapse record above to realize that the scale of growth postulated there is not hypothetical.  This amount of mass developing within a favorable environment or host is of consequence.  Reports of individuals with internal masses or filaments on the order of scale shown are to be taken quite seriously as this report proves that it can and will happen under the appropriate conditions.  The nature of the material is partially ambiguous and partially known; further studies will hopefully present that result in due time.  Material of a protenaceous nature is under strong consideration.

It will also be noticed that a bright red hue exists across a portion of the surface; this is an evolution beyond the ruddy reddish-brown compounds that have been mentioned above.  It has been observed and reported on earlier; please see “Biofilm, CDB & Vitamin C“, (Apr 2014).  The photo in the center of the group shows the reaction of this reddish material to hydrogen peroxide, and the reaction is vigorous.  The same reaction is shown in kind within the paper referenced above.  The most direct interpretation here is that of a positive catalase reaction.  Catalase is a common enzyme found in nearly all living organisms exposed to oxygen and it  decomposes hydrogen peroxide into hydrogen gas and water7.  Clearly, we may conclude that we are dealing with a living organism but this fact has already become evident.  We are therefore each obligated to find out what the true nature and extent of this organism is, as it been equally and clearly demonstrated to be affecting the biology of the entire planet.  It is of more than passing interest that this gel material is of a bright red color and that it combines with hydrogen peroxide to produce the vigorous reaction.  Many readers may also be familiar with the reaction of hemoglobin with hydrogen peroxide and the similarity should not escape us since it also involves catalase8.  This preliminary reaction with peroxide was the basis for additional presumptive hemoglobin tests during research of past years; it should be recalled that the results of these tests for the presence of hemoglobin within the cultures were positive.  Regardless of where this research will lead to in future days, the nature of this material and this reaction should be of concern to each of us.

The final photograph on the right shows this same material under the microscope at reasonably high power.  What we find is a structurally more advanced and rigorous construct of the crossing filament and CDB embedded network in a familiar display  The reddish hue material is also abundant here and these observations further support the hypothesis of an iron-protein complex that is under formation.

This paper has introduced a roadmap of increasing complexity to each of us.  The path that emerges, regardless of the many branches that we choose, ultimately must return to the origin of growth as it is identified.  This, in all cases examined thus far, is indeed the CDB, or “cross-domain bacteria” as they have been tentatively designated.  This identified point of origin remains the focal point of current research by the Institute; each individual on this planet has the concomitant obligation to seek the truth on these matters and to make this same truth known to all. 

Clifford E Carnicom
Jun 07 2014

Born Clifford Bruce Stewart, Jan 19 1953


1. Biology, Neil A. Campell, Benjaming/Cummings Publishing Company, Third Edition, 1993. p. 221.

2. Modern Biology, Albert Towle, Holt Rinehart and Winston, 1999. p. 149.

3. Ibid., Towle, p 153.

4. Bacterial Reproduction, Regina Bailey,

5. Microbiology, An Introduction.  Gerard J. Tortora. Benjamin Cummings Publishing, 2001. p 281.

5. Wanger, G; Onstott, TC; Southam, G (2008). “Stars of the terrestrial deep subsurface: A novel ‘star-shaped’ bacterial morphotype from a South African platinum mine”. Geobiology 6 (3): 325–30. doi:10.1111/j.1472-4669.2008.00163.x.

6. The Microbial World: The Nitrogen Cycle and Nitrogen Fixation, Jim Deacon, Institute of Cell and Molecular Biology, The University of Edinburgh,  University of Edinburgh, (archive copy).

7. Catalase,

8. Why Does Hydrogen Peroxide Foam When You Put It On a Cut?,

Cross-Domain Bacteria Isolation

Cross-Domain Bacteria Isolation

Clifford E Carnicom
May 17 2014


A sufficient time period has elapsed to allow for the identification, classification and designation of a novel and ubiquitous life-form that is known to exist in association with the so-called “Morgellons” condition.  This call has thus far gone unheeded within the scientific community and more rapid progress is required.  It has been stated, by discovery (ref. The New Biology Jan 2014),  that this informal nomenclature is no longer sufficient to characterize the situation; that of an extensive, repeating and culturable life form with known properties and characteristics.  

It is known that a primary form of growth is an encapsulating filament sheath which is dominated by a keratin nature; this portion has many similarities to various fungal growths. The internals of the sheath are, however, without doubt the more captive interest of the matter and they have been studied extensively over a period of several years by this researcher.  Interest throughout this period has focused on a particular sub-micron structure that I have continually characterized as “bacterial-like” or “chlamydia-like” over the years.  This particular structure appears to originate the growth process and is therefore of the greatest importance and attention in study.  In the absence of formal participation by the scientific community in the nomenclature process, progress must be made and certain liberties will be taken until they can be refined by more formal procedures.  Henceforth, terms such as ‘bacterial-like’ will no longer be promulgated as they are now more ambiguous than is necessary or called for.  These internal structures will, for the sake of forcing the issue, be designated as a “cross-domain bacteria” (CDB) until further information or correction calls for any change.

The will be given this designation for several reasons, one of which is to no longer condone the extended procrastination that is referred to above. The additional reasons are based upon years of study and observation.  When and if additional information comes to light that justifies change, that change can and will take place.  In the meantime, however, the rationale for the deployment of this terminology is as follows:

1. Size.  The work has continually focused on the smallest identifiable living and propagating unit, and this is the sub-micron spherical structure.  The best size estimate on this structure ranges between 0.3 and 0.8 microns, or an average of 0.5 – 0.6 microns.  This measurement is limited only by the capability of the microscope and the imaging equipment that is being used.  As the equipment has improved the size measurement has trended toward the lower end of the scale as the means of focusing improves.  It is difficult to work with what cannot be seen  (e.g, virus, prion, molecule, atom, etc), and it has always been stated that there are expectations of additional discovery when such means become available.  

One of the first classification systems for living organisms is size, and so here it is that we must begin:

size chart

A chart of the approximate size ranges of organisms, biological structures and cells.  It will be noticed that most bacteria range between 1 and 10 microns in size.  Two of the smaller bacteria that are known to exist are mycoplasma and chlamydia  pneuomoniae; these are on the order of 0.1 to 0.4 microns in size.  Image Source : Estrella Mountain Community College.

In lieu of additional information and as an obvious point of reference, it is more than reasonable to suggest a bacterial nature (modified or otherwise) for the organism and unit under study.  As mentioned, structural units beneath the current limit of observation and measurement are difficult to propose within this scope of the study.

2.  Shape.  The next most obvious approach (again, within the means available) to classification is that of shape.  The requirement to maintain the argument for a bacterial nature must include the existence of the observed spherical form.  This condition is not difficult to meet, as bacteria commonly exist  in the following major shapes or forms:  spherical, rod like, spiral, , or as combinations or aggregates of these forms.

shapes chart

A chart of the shapes and geometry of known bacteria.  The organism under study clearly falls under the coccus, or spherical shape.  The subsequent development of the CDB within an encasing filament adds an entirely different aspect of consideration to a more comprehensive classification and identification.
Image Source : Microbiology Online.

The measured size and observed shape of the organism is sufficient, in itself, to advance and justify the use of “bacterial” terminology in a classifying sense at this stage of the investigation.  Clearly, there are additional dimensions of growth form and development that will eventually transcend this current reference point.  Readers may wish to review the papers entitled, “Morgellons : A New Classification” (Feb 2010) and “The New Biology” (Jan 2014) for the more immediate “complications” of this simplification.  

There remains, nevertheless, more that can be offered within the scope of conventional consideration that supports the “bacterial” proposal.

3. Gram Stain.  The following statement, from the University of Maryland Pathogenic Microbiology division,  is provided to exemplify the importance of the Gram staining procedure in the world of microbiology.

“The Gram stain is the most important and universally used staining technique in the bacteriology laboratory. It is used to distinguish between gram-positive and gram-negative bacteria, which have distinct and consistent differences in their cell walls.”

The procedure, therefore, is a major tool in seeking an understanding of a primary difference in the morphology of bacteria; it is highly relevant to the current need to classify and identify the primary and primitive (i.e., original) observable form of the organism. We must start somewhere and eliminate the vacillations and ambiguity that have obfuscated progress over the last two decades; a greater sense of definition is required and I will assertively advance that motion.  

The first question on the Gram stain issue is whether or not it even applies.  Does this particular organism accept the stain and, if so, with what results?  It does, and the tests indicate a Gram-negative result.  The interpretation of that test remains an outstanding need and it will undoubtedly play a larger role within the current work involving protein examinations.

Investigations of this nature will be found as far back as 2008; readers may wish to visit the earlier papers entitled, “And Now Our Children” (Jan 2008), “Morgellons : 5th, 6th and 7th Match” (Jan 2008), “Morgellons : Pathogens and the General Population” (April 2008), and “Morgellons : A Status Report” (Oct 2009) for the earlier work on this primary classification method.

This current paper and the results presented herein continue to support that earlier work.

4. Positive Membrane Lipid Test.  A test has been developed for the presence of lipids in the outer membrane.  The test results are positive.  This test result is consistent with a gram-negative test for bacteria.  The results of this test are shown and described in more detail in a separate paper entitled : “CDB : General Characteristics”.  This test result has significant ramifications that are likely to affect the future study of the internal nature of the CDB.

5. Cultures.  The next rationale for the use of “bacteria” terminology (albeit, modified) is that of observation of the culturing process.  Again, restricting our consideration to the originating observable form of the organism (subsequent developments are, as mentioned, an entirely more complex issue which suggest highly sophisticated biological engineering), the cultures under development demonstrate a response that is perfectly in accord with any bacterial expectations.  The cultures are highly responsive to temperature and nutrient variations.  The growth curve is one of rapid increase at the onset, followed by diminishing returns with the corresponding decrease in available nutrients.  The logistical form of population growth is one model that can be reasonably applied to the observations, and it is accord with population modeling.  The responses of the cultures to both Fenton’s reaction as well as inhibition methods that have been described are in further accord with a bacterial element to the life form.

6. Biofilm.  The next topic relating to bacterial consideration is that of biofilm development.  Recent work indicates significant masses of a biofilm product can be produced from affected oral cavities using a relatively simple method; this description is in process at this time.  The production of biofilm is a protective measure taken by many bacteria to insulate themselves from effect by the local surrounding biological environment.  The biofilm under investigation in this case can easily be verified by microscopic means to contain significant numbers of the very same CDB that are under examination here  Biofilms are an attribute of most microorganisms; they are especially notable in the bacteria and archaea domains.  The purpose of biofilm is “to protect the organism from a hostile environment or to act as a trap for nutrient acquisition” (see Biofilm Formation in the Industry – VTT Research).  Biofilm is a polymer composed primarily of DNA, proteins and polysaccharides.

7. Proteins.  Certain laboratory tests, specifically Coomassie Blue stain, ninhydrin tests, UV absorbance and Biuret tests,  confirm the existence of proteins within the CDB.  The known characteristics of many of the bacteria and archaea classes are in accord with the investigations underway that involve metallic protein complexes as an important aspect of their structure.  It is known that iron is one of the essential elements of the proteins under examination.

8. DNA.  The apparent successful isolation of DNA from the cultures under development is direct evidence of a viable, reproducing and unique life form.  This aggregate of information, i.e., size, shape, stain properties, growth behavior, biofilm production and DNA existence continues to support the argument for the most primitive form of existence as that of a “modified” bacterial class.

9. CDB.  The modifier “cross-domain” to the bacteria terminology has been intentionally and deliberately introduced by this researcher.  The purpose of the term is to force the consideration and discussion of the more complex issues that arise when the more ‘mature’ stages of growth of the organism are examined. The issues include the subsequent development, under favorable environmental and nutrient conditions, of an encapsulating sheath, or filament, that contains the bacterial forms.  This pattern and form of growth has been extensively described and reported on within this site.  It is here that we must step outside of the originating form, and we will undoubtedly be forced to develop new and additional terminology to encompass these unusual circumstances.  The use of the term ‘cross-domain bacteria‘ is simply to provide a reference point for further discussion, the rationale of which is hopefully agreed upon to be consistent with classification systems up to and including the existence of the originating form ONLY.  The issue becomes only increasingly complex from the filament production level onwards, as the erthyrocytic question develops (again under increasingly favorable environmental and nutrient conditions) from there, whether we wish to confront this fact or not.  Clearly, we are dealing with a remarkable construct of biology here, and it will eventually be impossible to ignore it as it makes it mark further upon this planet.

There is nothing sacred or dogmatic about the proposals in terminology here.   There is precedent for the terminology in the literature as will be found; the act of crossing the domains of biological life forms is known to exist.  As one example, please note the Symposium of 2007 entitled,  “Cross-Domain Bacteria : Emerging Threats to Plants, Humans and Our Food Supply” by the American Phytopathological Society.  One of the primary questions here is whether this particular form is of natural or engineered origin; the evidence speaks to the latter.  The primary purpose of this controversial injection into the discussion is exactly that – to force the issue of proper scientific analysis and nomenclature by the responsible and competent parties within society.  It is to no longer condone the acceptance and use of ambivalent, ambiguous and obstructive cultural lexicons as a perpetual subsititute to honest and open research and disclosure.  When these circumstances improve and when the benefits are apparent and  known to the public, I will amend my own ways and discussion to reflect the progress that humanity deserves.

Additional Notes:

The following images derived from culture growths are representative examples of this external and internal known structure:





Original magnification of images to left: approx. 5000x.  Images on right are at original magnification, approx. 7000x.

The means to separate and isolate the cross-domain bacteria has been achieved.  The method uses a combination of caustic solutions, heat and iron ions; evidence of that separation is presented below.  The presence of iron ions in solution appears to be a very important factor in making the cross-bacteria readily visible.  A definite chemical reaction takes place between the isolated and purified culture in alkaline solution subjected to heat and the addition of either iron sulfate or chelated iron.  Chemically, there appears to be an immediate reaction between the bacteria and the iron and this is verified with microscopic examination.  Iron as a part of the culture medium is what has allowed this discovery to eventually take place.

pure isolation of cbd

A good example of pure isolation of the cross-domain bacteria, as separated from the encasing filament.  Original magnification approx. 5000x.

oil immersion of cbd

An oil immersion image of the cross-domain bacteria at maximum magnification.  A colored attribute of the bacteria does appear to exist.  Magnification approx. 13,000x.


gram stain of cbd

The Gram stain process applied to the cross-domain bacteria.  All indications are that the cross-bacteria stains Gram stain negative due to the pinkish color apparent.  This is in accordance with results achieved several years ago with preliminary investigations.  An excellent example of the bounding filament enclosing the cross-domain bacteria is central to the photograph.  Original magnification approx. 5000x.

Biofilm, CDB and Vitamin C

Biofilm, CDB and Vitamin C

Clifford E Carnicom
Apr 22 2014
Edit Jun 13 2014

Note: I am not offering any medical advice or diagnosis with the presentation of this information. I am acting solely as an independent researcher providing the results of extended observation and analysis of unusual biological conditions that are evident.  Each individual must work with their own health professional to establish any appropriate course of action and any health related comments in this paper are solely for informational purposes and they are from my own perspective.

A method has been established that shows promise of being effective in removing significant masses of biofilm that encapsulate large quantities of the “cross-domain bacteria” (CDB) as they have been identified and designated by this researcher.  This method applies to oral cavities only and it is simple to investigate as to its efficacy.  The identification of the CDB has been confirmed by microscopy; one  unique feature of this organism is the frequent co-linear arrangement of the bacteria within an encasing filament.  The various stages of growth of this life form have been documented extensively on this site, and a progression of development is understood.   The term “Morgellons” as popularly used, is insufficient to characterize both the uniqueness of the life form and its ubiquity in the environment.  The term “cross-domain bacteria” (i.e., CDB) has been established as being intrinsic to the origin of the life form;  attention has been called to the the fact that the scientific nomenclature for this ‘new biology’ remains woefully inadequate.  Any perception that this so-called “condition” is restricted to the human species is false; planetary consequences are before us.   Please refer to earlier discussions that elevate the seriousness of this need for increased participation by the scientific and health communities.

biofilm 1

A representative example of the biofilm removed from the gum-dental line region of an individual using ascorbic acid as outlined in this report.  This particular biofilm encases massive numbers of the cross-domain bacteria  that are are centric to the organism’s growth and development.


biofilm 2

A low power observation of the biofilm sample; bottom and top lighting combined.   Magnification approx. 200x.

The biofilm was extracted from an oral cavity by subjecting the gum line to a fairly concentrated solution of ascorbic acid in water (approx. 1 gm. in 30 ml of water).  The solution was held in place for approximately 15 minutes and the test procedure was repeated three times for an accumulation of material.  There was some local tooth discomfort at the region of collection for this individual.

biofilm 3

A reddish hue and formation that develops within the biofilm after approximately three days.  This color formation has been observed on more than one occasion and it remains to be identified.  Iron complexes and hemoglobin production are topics that are under consideration; please review earlier papers that involved tests for hemoglobin within advanced cultures.  Contrast on photograph has been increased to emphasize the visible color change.

biofilm 4

biofilm h2o2

The biofilm extract after 1-2 weeks of development.  Highly developed  reddish color is evident.

A very strong reaction of the developed red biofilm extract to a hydrogen peroxide (3%)  solution.  The investigation of hemoglobin existence from previous papers or current catalase tests are under further consideration here.  The “erythrocytic” formations, however, are not prominent in this biofilm extract development.

biofilm uv

The sample above subjected to UV radiation.  The pink-magenta fluorescent hue is highly distinctive.  This particular characteristic of the CDB, its association with the biofilm and the more advanced stages of CDB growth is an important subject that is deserving of additional research in its own right.  The same tint has been observed on the skin surface as well as with dental observations.

biofilm micro 1

biofilm micro 2

Microscopic examination of the biofilm extract.  The existence of massive amounts of CDB within the extract are verified with this inspection.  The biofilm extract is dominated by the presence of the CDB, and not the filament form.  The filament form of growth is a more advanced stage of growth and occurs later in the development cycle of the organism.  Magnification approx. 5000x.

An additional microscopic view of the biofilm and excessive CDB existence within. Microscopic  The presence of the co-linear arrangement of the CDB within a filament structure is also visible.  The early stages of linear formation of  CDB, also referred to as the ‘pleomorphic’ form’ are also occurring within this sample.  The sample upon collection is primarily whitish in color as is shown above.   Magnification approx. 5000x.

biofilm micro 3

biofilm micro 4

The filament form as it has developed from the biofilm extract and culture after approximately 2 weeks.  This systematic development will be described in greater detail within a separate paper.  Magnification approx. 5000x.

A microscopic image at the boundary of the reddish formation within the biofilm extract after a period of approximately 2 weeks.  An extended filament network exists at this stage along with extensive rich color development.  The variations of formation within the filament structures will also be discussed in greater detail within a separate paper.  Magnification approx. 5000x.

Readers may also wish to review a paper entitled “Growth Inhibition Achieved” (Jan 2014) that examines the role of ascorbic acid and various antioxidants in the culture growth process.  Articles under this same topic exist several years prior to the current studies of antioxidants.  In addition, the Morgellons : A Working Hypothesis (Neural, Thyroid, Liver, Oxygen, Protein and Iron Disruption) (Dec 2013) also extensively discuss the role of antioxidants within the studies of the growth process.

The New Biology

The New Biology

Clifford E Carnicom

 Jan 18 2014
Edited Apr 09 2014
Edited Nov 28 2015

It is generally perceived that the so-called “Morgellons” issue is primarily, if not exclusively, a human condition. It is not. It will be found that this condition actually represents a fundamental change in the state and nature of biology as it is known on this earth. The evidence now indicates and demonstrates that there is, at the heart of the “condition”, a new growth form that transcends, as a minimum, the plant and animal boundaries.

The precedent for this argument was made some time past in the paper entitled “Morgellons: A New Classification” (Feb 2010); the central theme of that paper remains valid at this time. The very classification of the domains of life is central to that paper. Readers may also wish to refer to the papers entitled, “Animal Blood” (Jan 2010) and “And Now Our Children” (Jan 2008), where additional precedents were established. The August 2011 video presentation, “Geo-Engineering & Bio-Engineering: The Unmistakable Link” is also relevant here.

It is to be accepted that this growth form appears to be ubiquitous in the environment, food supply, plants, and animals and that the reference frame for its existence must be fundamentally changed to be in accord with this reality.


oral potato  rejuvenated

Macro view of variable source culture growths. Human oral filament culture to left, potato filament culture in middle and to the right, the rejuvenation of a dormant culture from a three year old lye extract solution.  Dormancy is established with extremes in temperature, lack of moisture, or caustic chemical environments, as reported earlier.  Growth medium in all cases is a fructose and iron sulfate solution under incubation.  The cultures are identical in view, structure and growth characteristics.  Period of development and growth is approximately 2 weeks.   Click on photos to enlarge.

culture 2 culture 1  culture 3

Microscopic views of the three variable culture types from above (left-oral sample culture, center- potato culture and right-rejujvenated dormant culture) under high magnification.  All cultures are identical to the sub-micron level including external sheath and internal bacterial-type form.  Click on photos to enlarge.  Magnification : approx. 5000x.

calf liver 3 calf liver 4

calf liver 1 calf liver 2

Calf liver examined.  Calf liver shows presence of identical filament and bacterial-like structures.  Growth forms are not unique to the human species; the food supply, animal and plant kingdoms are under equal consideration for the presence of the live form.  Abundant fat cells observed embedded with countless bacterial structural form, as in top left image.  Image to top right shows presence of filament form, fat cells and embedded bacterial forms in large numbers.  Lower left photograph demonstrates primary filament form with secondary filament structure under development.  Lower right photograph shows sub-filament structure within primary filaments.  All forms and structures identical to those observed within human samples. Two separate slide preparations examined; filament structures located after extensive study of both slides. This liver sample has also rapidly produced a viable and representative filament culture growth within the span of a few days.  Click on photos to enlarge.  Magnification : approx. 5000x.

ninhydrin 1 ninhydrin 2

Comparison of ninhydrin visible light spectrometric analysis of oral filament sample culture and potato filament culture.  Results are identical to a remarkable level.  Method involves: 1. Incubation of cultures for approximately 2 weeks in a fructose-iron sulfate solution.  2.Cultures extracted and placed within a sodium hydroxide-potassium hydroxide boiling water bath for approximately 15 minutes; a rich burgundy solution will result from the essentially colorless filament form (refer to paper entitled, “Environmental Filament Penetration, C.E. Carnicom, Jan. 2013).  3. Further extract approx. 15 drops of this colored solution into approx. 4 ml. distilled water with 5 drops ninhydrin solution added; heat again for approx. 15 minutes in hot water bath.  4.  Second deep-colored reaction will occur due to amino acids present in solution; spectral analysis is then conducted at this stage.  This method further substantiates the identical visual, metric, and chemical comparisons of the incubated oral and plant based filament culture forms.

potato 1 potato 2

Examination, to the left, of thin (”organic”) potato slice showing background cellular structure and several starch cells in the upper right quadrant.  Notice presence of intermeshed filament stucture overlayed or crossing cell wall boundaries.  Microphotograph to right demonstrates equally the presence of an internal sub-micron filament network.  This photographic examination prompted the more thorough investigation of plant and food supply issues, and the development of alternative cultures for comparison to human sample cultures.  Click on photos to enlarge.  Magnification : approx. 5000x.


Time lapse microscopic views of carrot cells.  Motile bacterial-like structures are especially visible and evident in cell in lower right quadrant.   Click on photos to enlarge.  Magnification : approx. 5000x.

swine lung 3 swine lung 1 swine lung 2
swine lung 6 swine lung 4  swine lung 5

Microscopic views of dried swine lung sample.  Extensive filament network exists within sample; the filament forms are identical in structure, form and size to plant, human and animal samples.  The pig lung also rapidly produces a viable and identical filament culture within the sucrose-iron fluid environment.  Click on photos to enlarge.  Magnification : approx. 5000x.

swine lung controlReference prepared slide of lung tissue from  No extensive filament network visible at this level of magnification or known source for its existence in a control photograph.


Diseased rhododendron leaf received for observation and study with respect to the bacterial-like forms.  This sample is to be examined under the microscope to further assess the extent of distribution on the conditions reported above.

rhododendron micro rhododendron micro 2

Identical bacterial-like forms located within the rhododendron sample.  The rhododendron leaf is a more difficult sample to prepare due to the thickness and density of the leaf; sufficient visiblity was acquired, nevertheless, with the use of the microtome.  Ease of observation and examination occurs primarily at the leaf edge, and numerous regions of the bacterial-like forms were identified.  Isolated examples are shown above as outlined.  Magnification approx. 5000x.

Perpetuation and confirmation of the original growth form within the rhododendron leaf through the culturing process.  The existence of bacterial-like forms within an additional plant form, i.e., ornamental, is confirmed.  The age of the culture is one day. The rhododendron culture has also produced the filamentous form within approximately one week of time; it is therefore in keeping with all observations and conclusions stated on this paper.  Original magnification approx. 5000x.

rhododendron micro 3

This work demonstrates that the “Morgellons” situation has been completely understated and underestimated in its significance and distribution.  It is no longer to be considered as unique to any life form or species.  The term itself, as commonly interpreted to represent a condition or disease,  is inadequate to encompass the scope of impact to the biology of the planet.  The nominal attention to classification and nomenclature of the life form by the scientific community is also long overdue, and this community will soon be forced to enter into that review process.  It is recommended that such nomenclature capture the true nature of this life form, as it is now known to cross the domains of biological existence on this planet.

Note: Appreciation is extended to Ryan Hannigan for his provision of the rhododendron sample for comparative analysis.  Readers may wish to stay attuned to any further developments from Ryan’s research that is under development, including that of botanical study.  CEC

Advances in Microscopy Blood & Skin Filament Examinations – A Slide Show

Advances in Microscopy

Blood & Skin Filament Examinations – A Slide Show

(click on any image – controls available on each image)
Nov 19 2013
Clifford E Carnicom

A maximum magnification that combines optical and digital means has recently been achieved.  The  development allows, under suitable conditions and sampling, a magnification of images at a  reasonable resolution up to a level of approximately 18,000 power.  This method has been applied to  the examination of human blood samples as they relate to the “Morgellon’s” condition.  A brief  introduction to the results of this recent advance in microscopy that uses relatively limited means and  equipment is presented below.  Relevant topics of research that arise from the study include the more  detailed appearance of the bacterial-like structure that has been studied extensively by this research.   The degradation of the red blood cell exterior membrane is also clearly apparent.  The rather striking  appearance of white blood cells, their behavior with respect to the bacterial-like component, and the  internal structures that are visible within the white blood cells are of high interest.  The importance of  an active immune system against the bacterial-like encroachment is immediately obvious.  Introductory live-blood video analysis recently performed further emphasizes the importance of the relationship of  the immune system to the Morgellon’s condition.  This level of awareness and visibility on the  Morgellon’s condition is a direct result of these recent advances in microscopy methods and  techniques.  The availability of more advanced equipment, should it become available, will accelerate  this discovery process.


A brief discussion and history of the individual providing the blood control photographs above is in order.  This particular individual, several years past, had blood conditions that are identical to those which are the primary subject of this paper.  This individual has a history also of significant oral production of filaments (primarily in the upper oral cavity) accompanied by severe and protracted dental pain and damage to the upper teeth. Outward manifestation of skin-based filaments or skin lesions have never been significant issues with that individual.

It appears at this time that the change in the blood condition of the control individual shown above is due primarily to two main factors over a period of several years:

1. The application of the results of the extensive research results that are inherent within this site.
2. The removal of all upper teeth of the individual.

The control individual remains able to produce oral filaments, but the blood and the general health of the individual appears to have significantly improved over this same period. The chronic and severe dental pains have been eliminated at the expense of removal of the teeth. It remains of interest why the upper teeth were the primary source of injury and why they have been the primary source for oral filament production. The identification of all markers of the “Morgellons” condition and their relative importance remains a subject of much worthy discussion and research. It has long been a claim by this researcher that the state of the blood appears to be a primary factor in the evaluation of the condition along with the existence of filament forms internal to the body and their extent of distribution.


(Original magnification of all images 18,000x)

The images above represent another breakthrough in the analysis of the external skin filaments that are associated with the Morgellons conditions. The majority of the images are captured using oil immersion techniques in combination with a digital-optical modified microscope. This set of images are the most detailed to date that are known and they show a plethora of internal structural forms. A more reliable measurement of the “bacterial-like” (i.e., chlamydia-like) structure has now been acquired with the use of the advanced techniques. This measurement is on the order of 300 nanometers, and thus the world of nanotechnology is now within the domain of Institute research. It is now clear that both the internal sub-filament structure and the bacterial-like forms are both on the order of 300 nanometers in diameter or width. This measurement is within the range of the larger viruses and of the smallest bacteria. A fair amount of effort is required to acquire the imagery shown.

It will be found that the shape, size, geometry, chemistry, and infra-red spectral response is identical for both the 300 nanometer structure within the blood and the 300 nanometer structure within the exterior skin filament. Ultimately it will be understood that the structure is also identical to that within the “environmental filament” so extensively studied by the Institute in the past. They are all of one and the same cloth, and at some point it will be equally understood and accepted that “Morgellons” does indeed have an environmental source for its existence.

The photos above show a great deal of detail with respect to the internal filament structure encased within the exterior filament housing, the sub-micron structures, the pleomorphism quality, aerosolization of the filaments at the filament boundary, and numerous budding and generating structures that are at the heart of its growth process. Detailed examination will show that these same forms and processes occur within the blood of those affected by the so-called “Morgellons” condition and that this conclusion can be documented and replicated in a controlled environment.

There is a wealth of discussion that could take place with the photographs shown above. There is a strong and clear lineage of research over many years that leads us to these consolidated images of yet another examination of the blood and the impact of the Morgellon’s condition upon the blood. The thesis of the blood condition as a primary indicator for the existence of the Morgellon’s condition remains. The evidence supporting the broad display of these effects by much of the general population remains in place. The means and methods may improve slowly over time, but the general conclusions of harm have been reached some time ago. My time and opportunity constraints force me to leave this extended discussion for a later date, as another paper in progress for more than a year demands its conclusion. The need for a honest and thorough investigation, the call for full disclosure, and the dedication of resources to bring about an end to this suffering remains in place.

Clifford E Carnicom
(Born Clifford Bruce Stewart Jan 19 1953)














Estimated Completion Date : Can Not Be Estimated At This Time

Clifford E Carnicom
Jan 2012

Note: I am not offering any medical advice or diagnosis with the presentation of this information. I am acting solely as an independent researcher providing the results of extended observation and analysis of unusual biological conditions that are evident.  Each individual must work with their own health professional to establish any appropriate course of action and any health related comments in this paper are solely for informational purposes and they are from my own perspective.



A viable and tangible strategy to disrupt the growth process of the Morgellons condition, as it exists within the culture form that has been developed, has been established.  This strategy involves the breakdown of certain chemical bonds within an identified proteinaceous complex in a manner that is not harmful to the human body.  The reduction strategy also includes the release of iron that is held within the proteinacous complex in a chelated form.  This strategy has been established with confidence and a repetition of results.  The current work will be applied next directly to oral human samples.  Much time, energy and resources will be required to further investigate, verify and apply this strategy. The preliminary results and the theories are promising at this stage.

biuret iron

To be continued

protein graph

To be continued


A note to the staff of the Institute tonight (Dec. 2, 2011); this will give some idea as to some of the work in progress…

The existence of a protein within the culture growths has now been established with confidence tonight. I had to do work to eliminate questions of potential contaminants that might have distorted the results. It is also a process of much patience with chromatography, literally drip by drip over many days for each test that is set up. It has taken about 1 1/2 to 2 months to get to this point.

Existence of a protein is eventually of equal importance as that of the iron work. We now have iron and the protein as two primary and identified constituents. This work will raise more questions that it answers, but we need to live with this for now until future means and equipment and methods work their way in. One more reliable way of putting a stop to this fellow is to truly understand the biochemistry and the life cycle of growth; there is then a better chance of interfering with that cycle in a known manner.

The existence of a protein means there is DNA behind it. As you can imagine, the work has actually just begun if we can get these means. Next questions would be what type of protein, what is the function of the protein(s), sequencing of the proteins, etc. Right along with it would be the isolation of DNA, electrophoresis work, etc.  An infra-red spectrophotometer would be a very useful piece of equipment for us on an ongoing basis – we are having to work very hard to get certain results that would be more apparent with the right equipment.

I may put this comment on the paper to get the process started, otherwise I have so many to write I will never get to any of them at the current rate…


 A positive Biuret protein test result

A positive Biuret protein test result using a separation of elute from the chromatography column. The sample material is based upon a culture from oral filaments.  The original extraction from the chromatography column is to the left; the positive Biuret result for the existence of a protein is shown on the right with the purple color.  Successful separation on the column has been achieved using various combinations of solvents in combination with a stationary phase

A positive Biuret test result using whey

A positive Biuret test result using whey (lactoferrin) protein for control purposes.  A positive test results in the purplish color shown above.  The Biuret test depends on a copper complex that forms between the protein (peptide bonds) and copper sulfate and an alkaline solution, such as sodium hydroxide.


The morphology, metabolism and life cycle of the “Morgellons” organism, as defined by this researcher, is increasingly being understood.  There are now three scenarios that can be provided that encompass the majority of the understanding that has been achieved.  

The first of these examines a similarity of form, at least in part, to a dimorphic fungal-like organism.  

The second considers the joint existence of bacterial-like and fungal-like organisms in a symbiotic relationship.  

The last raises the spectre of a genetically created or designed organism.  

Each of these scenarios has certain strengths, weaknesses and probabilities of occurrence.  There can also be a degree of overlap between these alternative interpretations.  This paper will discuss what has been discovered, within these three scenarios,  that helps us to potentially define the nature of this unusual organism.

morphology 1

morphology 2

morphology 3

morphology 4

morphology 5

morphology 6

morphology 7

morphology 8

morphology 9

morphology 10

morphology 11

morphology 12

morphology 13

morphology 12

morphology 13


The magnetic (and consequently, the electromagnetic) properties of the primary Morgellons growth form are now proven in a direct fashion.  The video segments below show the response of both the culture derived form and the oral sample to a strong magnetic field.  These demonstrations will call into consideration each of the papers written on the subject of electromagnetics by this researcher.  One such topic will be the extended research that has been done that reveals the ambient presence of unaccounted Extremely Low Frequency (ELF) energy over a testing period of several years.  The human electromagnetic system operates primarily within the ELF portion of the electromagnetic spectrum.  The sensitivity and response of the Morgellons growth form to the electromagnetic spectrum is another of the many primary fields of research that requires funding, resources and skilled personnel to complete.  The identified presence of iron and ferromagnetic compounds within the growth forms establishes the basis of this future research, along with the direct demonstration of the magnetic response shown below:

To be continued.


dna 1 dna 2 dna 3

To be continued.


To be continued.

serbia 1 serbia 2
serbia 3
serbia 4 serbia 5
serbia 6 serbia 7
serbia 8


To be continued.

column 1

column 2




To be continued.


To be continued.



Starch Gel Electrophoresis Applied to Proteinacous Samples : Initial Tests Underway



Starch Gel Electrophoresis : Trial Runs of Test Dyes and Blood Sample.   Left photograph shows methylene blue dye migration towards the negative terminal. Arrows on right photograph depict origins of placement.  Blood sample shows both positive and negative charged protein component separation at lower portion of right photograph.  Eosin test case on upper left of right photograph; migration toward positive terminal  Methods remain under development; no successful separation of presumed culture based proteinacous component at this time.

To be continued.


Another test method has been developed to detect and establish the presence of iron in the Fe3+ state within the culture growth that is based upon the oral samples.  The test is positive.  The further significance of this test is that it has been applied directly to the proteinaceous complex that has been extracted from the culture with the use of column chromatography.  This further substantiates the case that the proteinaceous complex itself contains iron in the ferric state and that this iron is bound to certain amino acids that are under examination as candidates.   It will be possible to determine the concentration of the iron within the proteinaceous complex through spectrometry.  The test is based upon the use of ammonium thioglycolate.

Clifford E Carnicom
(born Clifford Bruce Stewart Jan 19 1953)


Clifford E Carnicom
June  17 2011

Note: I am not offering any medical advice or diagnosis with the presentation of this information. I am acting solely as an independent researcher providing the results of extended observation and analysis of unusual biological conditions that are evident.  Each individual must work with their own health professional to establish any appropriate course of action and any health related comments in this paper are solely for informational purposes and they are from my own perspective.

Analysis shows that the primary organism (or pathogen) characteristic of the “Morgellons” condition, as isolated and identified by this researcher,  causes a signficant biochemical change in the nature of human  blood in which it resides. The dramatic change in the character of the blood has also presented through visible observation for several years, but this change is now objectively and directly measurable through the use of spectral analysis.  This change in the general character of human blood, as it has been measured from several individiuals, is regarded as highly significant and expressive of a potential fundamental change in the human condition.   The representative change in the character of the spectrum is shown immediately below:

hemoglobin comparison

The above shows the nature of the change and of the problem.  All matter reacts in a unique fashion to electromagnetic energy which, in this case, is visible light.  Hemoglobin, (the primary protein in human blood cells), has such a unique and characteristic spectrum over the visible light range.  This expected, normal, or reference spectrum of hemoglobin is shown with the black line in the graph above1.  This spectrum shows how a substance or element reacts to energy, and the locations of the peaks in the graph are where the hemoglobin absorbs the most energy in the visible range.  In this case, this should be at approximately 414, 542 and 576 nanometers respectively.  There are important variations to this expectation, and they pose serious problems that are to be confronted.

The red line in the graph shows the average hemoglobin spectrum as measured within a set of nine essentially random individuals, ranging from approximately 23 to 70 years of age.  The sample size may be increased further in the future but statistical significance is nevertheless already attained.  Such a monumental change in the basic nature and character of a fundamental and crucial protein within the human body is a manifestation of significant biochemical changes within that same body. By no measure of a “normal” state of health would such a change be regarded as within “acceptable” or “expected” boundaries.  The fundamental nature of the protein, i.e., blood, has been changed in the case presented.  This researcher continues to contend that state of the blood of an individual is one of the most reliable, if not the most reliable, indicators of the existence and severity of the so-called “Morgellons” condition.

Future work and papers will focus on the interpretation of the nature of this change, and the development of a spectral method to indicate those individuals that may be subject to greater risk of existence of the condition or of more dramatic changes in the blood of the individual.  No medical inferences are to be made from this research, and it is considered to be of analytical utility only.  The medical community is invited to share in the collaboration or examination of this research as it perceived to be of benefit or not.  The spectral methods under development are anticipated to be of value in the monitoring or measurement of change of the condition in a non-invasive manner.  

The graphs below will provide further insight into the spectral development process, and they are provided as a supplement to the primary finding reported above.

hemoglobin reference

One of the ironies of the current research is that establishing a reference spectrum for hemoglobin, from current human blood samples, is problematic.  At this point none of the human blood samples studied are able to reproduce the expected spectrum of hemoglobin.  Each sample examined thus far demonstrates significant deviation from this expectation, as will also be described further below.  This finding, now from a spectral perspective, is actually in line with the concerns expressed by this researcher some time past, and this is that the general population appears to be subject to the so-called “Morgellons” condition to varying degree.  The heart of this research, then and now, is upon a particular organism repeatedly identified in the blood of all samples observed, along with oral filament samples that are also characteristic of the condition.  As such, it has actually been necessary to develop the “reference” hemoglobin spectrum from the literature, as no “pure” or live case is available to me at this time.  The graph above is such a set of reference spectrums that have been developed from the literature on the subject2.  The concentration of a substance can also affects its spectrum, and thus a process has been generalized to determine an appropriate spectrum for various concentration levels.

culture spectra

The graphs is an example of how concentration can affect the spectrum of a substance; this set of graphs shows the spectrum of the cultured organism over a fairly broad range of concentrations.  It has been discovered that low concentration levels of the culture (sodium hydroxide and heat preparation, as described earlier) do not sufficiently portray the more dramatic spectral characteristics of the organism.  This deeper examination itself was prompted by the appearance of an additional prominent peak and additional spectral influences observed within more concentrated blood samples.  The important relationships between the spectra of the culture shown immediately above and its impact upon the blood will become more apparent to us as further research is described.  In the interim, readers are invited to examine the patterns implicit between the reference hemoglobin spectrum, the spectra of the cultures, and the average spectrum of blood as it is being reported at the onset of this article.  The graph to follow at the end of this paper will show the consolidation of these influences.

blood spectra

At an introductory level, this graph reveals the summary effect of the culture organism upon the blood.  Shown above is what is proving itself to be a representative sample of a human blood spectrum under various concentration levels.  Important insights may be gained by looking at this graph and how the character of the spectrum varies with respect to the concentration of the blood.  It will be found to be equally insightful to examine how the spectrum of the cultured organism (as shown in the prior graph) also varies with respect to concentration levels.  The greatest insight will be gained by combining both studies.

It will be observed, in general, that the greater the concentration of the organism within the blood, the more significant the impact is upon the hemoglobin, or blood of the individual.  This is, of course, a perfectly logical statement, but spectral analysis now provides us with a tool to more quantitatively assess that impact.  This will also, of course, be one of the major benefits of the spectral analysis of the condition that is now underway.

The photographs above revert to the alternative method of investigating the nature of the problem, and this is by direct observation of the blood.  This has been the historical basis for most of the work on this site until recent assistance to the Carnicom Institute (much gratitude is extended) permitted the appropriation of helpful instrumentation.  The larger structures are red blood cells, at approximately 5000x magnification.  What is essentially being recorded here is the saturation of the surrounding blood plasma with the organism that is under study and as it has been repeatedly described on this site.  This organism is at the sub-micron level and it is responsible for the culture spectra that have been shown in this report.   At this stage both observational and instrumental techniques are available to study the nature of  the “Morgellons” condition, and all information indicates a consistent and significant alteration of the basic nature, biochemical properties, and physical condition of the human blood.

Clifford E Carnicom
(born Clifford Bruce Stewart Jan 19 1953)


1. Optical Absorption of Hemoglobin, Scott Prahl, Oregon Medical Laser Center.

2. Ibid., Prahl.


Clifford E Carnicom
May 22 2011
Edited Jun 17 2011


Note: I am not offering any medical advice or diagnosis with the presentation of this information. I am acting solely as an independent researcher providing the results of extended observation and analysis of unusual biological conditions that are evident.  Each individual must work with their own health professional to establish any appropriate course of action and any health related comments in this paper are solely for informational purposes and they are from my own perspective.


This paper summarizes the status of current projects within a laboratory setting with respect to the “Morgellons” condition.  The paper will by necessity be brief; if additional time becomes available the subjects will be elaborated upon.   Each of these are worthy of their own discussion, but for the time being the following topics will be briefly discussed:


1. The role that iron appears to play in the growth of the underlying organism.


2. The expected impact of the organism upon the blood.


3.  A set of minimum conditions that allow the growth of the organism.


4. A variety of growth forms have been identified; they possess, however, a common spectral signature.


5. The apparent unique spectral signature of the underlying organism.


6.  Additional frequency analysis and the apparent impact upon the growth of the organism; considerations across the electromagnetic spectrum.


7. A spectral method to outline the potential presence of the organism within the blood of an individual and the expected impact upon the blood.


8. Indications of increased acidity in correlation with the “Morgellons” condition.  The role of pH in the corrosion rate of iron. The diminished capacity of red blood cells to absorb oxygen in a more acidic environment.


9. The success of growth of the organism in a blood based culture medium.


10.  Additional strategies, beyond alkalization and anti-oxidation, to be considered in the mitigation of the growth of the organism.



These subjects will now be discussed in greater detail:


1. The role that iron appears to play in the growth of the underlying organism:


iron destruction
See: Titanic, Resting or Reacting1
A Mechanism of Blood Damage2


A primary focus of this researcher remains upon the sub-micron bacteria-archaea-like organism that appears to underlie the existence of the so-called “Morgellons” condition.  This particular organism is the smallest identifiable feature and growth form of essentially all of the studies on this site related to the Morgellons condition over the years.  This remains the case in both the environmental samples that have been analyzed as well as the extensive observations of human blood and filament samples.  There is no reason known at this time to depart from this course of action as it remains as the primary source of impact upon the body that has been identified thus far.  It is acknowledged that other forms or variations may well exist, but until sufficient documentation of such variations is presented I will continue to seek the lowest common denominator within the studies that are in place.  My focus of study remains on the influence of the organism internal to the body vs. external manifestations.


There appears to be little doubt now that the organism can and does feed upon iron.  This conclusion is reached by both direct observation and by inference.  With respect to direct observation, numerous cultures have now been developed based upon both the use of the bacteria-archaea-like organism as well as the from the human oral filament samples.  Several variations in the culture mediums have been tried, including agar (beef and blood), wines (red and white), simulated wines, restricted solutions of iron sulfate and hydrogen peroxide, and more recently, dilute human blood.  They are all productive to varying degrees.


With respect to iron consumption, rapid growth can now be observed and recorded with the use of water, iron sulfate and hydrogen peroxide alone.  This observation refers back to earlier work, such as that presented in the paper entitled, Morgellons: A Discovery and A Proposal3.  This relationship with iron has been confirmed only more strongly over time.  It can now also be posited that an iron oxide form is created within the organism during the metabolic process as the tell-tale color of rust within the organism is assumed within this restricted growth environment.  It is a known fact that many of the archaea species can feed on iron and sulfur in an extremely hostile environment; contemporary research is very active in that regard.  The observations of survival of the organism under the harshest of conditions is one of the very reasons for the development of the paper entitled, Morgellons : A New Classification4.  If is also of interest that genetic research is underway to inhibit the ability of such organisms to consume iron as well as to understand the growth and metabolic processes involved,5,6.  Such research is immediately relevant to the interests of the Carnicom Institute, but sufficient resources to engage at this level of study are not available at this time. In addition, by inference from the extended observation of blood, the use of iron in the growth process of the organism is sustained as a conclusion; this topic will be discussed further in the next section of this report.




2. The expected impact of the organism upon the blood:


blood 1

blood 2


An observed method of blood damage has previously been reported on (A Mechanism of Blood Damage,).  The agent responsible for the damage being spoken of is the bacteria-archae-like organism that is at the center of this research.  The progression of damage first includes the introduction of the organism into the serum of the blood.  The second stage involves the attaching of the organism to the outside walls of the erythrocytes, or the red blood cells.  The next stage involves the breaching of the erythrocyte cell walls.  The latter stages result in essentially an invasion into the cell and a breakdown in the general integrity of the cell.  In some cases this damage is extreme and the blood itself is no longer even recognizable from a conventional viewpoint.


When we combine damage to the integrity of the erythrocytes at the level recorded along with a demonstrated ability to consume iron, it is not any extension of logic to presume that metabolic imbalances of iron content in the human body are likely to occur from this damage.  This is in addition to the diminished capacity of the blood to perform the essential functions of oxygen, nutrient transport and waste removal.  Each individual must pursue their own evaluation of this issue with the medical professional of their choice; my only purpose here is to present the information which must be considered from a logical point of view in conjunction with direct observation.  


Iron is a core element in the formation of hemoglobin7.  An iron consuming organism, in direct conjunction with the manifestation of the Morgellons condition, has been identified.   It is to be expected that damage to the blood and that interference with iron metabolism will occur in conjunction with the extensive presence of this organism within the blood.  Again, each individual must consult with their own health professional on any consideration given to this information.




3.  A set of minimum conditions that allow the growth of the organism:




Over the past few years, various culture mediums have been used to develop the filament colonies, with emphasis upon the use of oral samples.  There remains additional work to be done, as a good portion of the success or failure has been through trial and error in addition to conjecture.  The early cultures were developed in an agar medium, with both blood and beef broth as a base.  These cultures were successful and introduced some of the more exotic findings involving erythrocytic forms within the growth stages.  Numerous papers have been issued on that aspect of the Morgellons issue as well, (e.g., Artificial Blood?8, Blood Issues Intensify9, Morgellons : A Status Report10.)


The next stage of culture development involved the accidental discovery of success using red wine, the very same solution that is commonly used to extract the oral samples.  This finding was a complete accident, and resulted from leaving oral extractions undisturbed for several weeks to even months within that solution.


The next discovery was that white wines were also successful for growth of the culture (not so for extraction, however, as there is a dye process attached with the use of red wine).  The white wines have the distinct advantage of allowing observation in a translucent medium, which makes the monitoring of growth under a low power scope much easier.  They white wines may or may not be as favorable to growth, however, this remains unclear.  Simulated wine mediums were also developed to replicate the general chemistry of wine, however, no particular advantage of that effort came about.  The chemistry of wines is in general, quite complex, and increases the difficulty of analyzing the metabolic requirements for growth using that medium.


The most recent culture work produces a somewhat surprising result, and this is that the medium of growth can actually be relatively simple. In earlier work(ibid., Morgellons: A Discovery and A Proposal), it has been found that the addition of iron sulfate and hydrogen peroxide enhances growth within the wine medium.  This process was described in detail and the issues of alkalinity vs acidity and anti-oxidants vs oxidants were raised on in a serious tone.  The importance of those findings remains as influential as ever upon the prospects for mitigation of the “condition”.


It has now been discovered that prolific growth can occur in a medium of only water, iron sulfate and hydrogen peroxide.  It is now feasible that growth will occur in even a more restricted medium.  It is known, however, that sufficient growth for analysis can easily be established within this simplified medium.  This has both advantageous and disadvantageous implications in the research.  As an advantage, it simplifies the requirements of analysis.  As a disadvantage, particularly as it relates to the importance of iron within human metabolism, it prevents some formidable obstacles to proposals that seek to inhibit or eliminate the growth within the body.  Please recall the earlier reference made to the active genetic research seeking the inhibition of iron consumption within certain bacterial or archaeal forms.  Unfortunately, the Institute does not have access to such resources at this time; hopefully there are those that desire to support such needs and causes.


In addition, the organism has been subjected to numerous exposures from caustic agents, acids, extremes in temperature and the lack of moisture; these have produced no detriment to its existence.  These latter additions only complicate the issue further and raise the bar for recognition of the resources required to approach the problems in earnest. 


4. A variety of growth forms have been identified; they possess, however, a common spectral signature.




There are several variants of growth forms that have been identified in the culturing process, but at the microscopic level they appear that they are essentially the same form.  Some of these variations include:


1.  An original oral or skin filament growth form.


2. The early stages of culture growth, which are somewhat amorphous in structure.


3.  The emergence of the primary filament structure on the surface of the medium.


4.   The emergence of more substantial filaments, usually colored, at the bottom of the liquid culture medium


5. The more substantial filament form representative of a maturing culture.  The first stage of this growth is pure white in color.


6.  Successive stages in the colors of the maturing filament growth, progressing through green and eventually black colors.


7. A newer and unusual form of growth that has recently been reported when subject to blue light energy.  Although still filamentous in nature to the visible eye, this is of a much coarser nature that demonstrates an explosive growth cycle.There is reason to believe that many more “exotic” forms of growth are associated with the Morgellons condition but these will require more detailed documentation and examination to include them within the current scope of study.


An important observation is that, regardless of the variation in surface morphology, color or structure, the underlying spectral signature of the organism appears to be the same.




5. The measured spectral signature of the underlying organism.




The measured spectral analysis of the culture form in the visible light and near-infrared portion of the spectrum.


A modern and professional spectrophotometer of high resolution has been acquired by the Carnicom Institute. Many thanks are extended to the the donors that have made this possible; additional laboratory equipment and a facility to operate from remain in need.  The availability of this equipment has advanced the rate of progress by a factor of months with respect to certain problems to be solved.  The instrument has also made numerous accomplishments possible which have not been accessible or available until this equipment came on board.


Essentially a unique signature of the organism has been identified; this has numerous advantages in objectively identifying the existence and presence of the organism.  Please notice the similarity of this spectrum to that laboriously obtained with vintage equipment, as described in the paper, The Biggest Crime of All Time11.  Further discussion on the importance and application of this work will be discussed in time.


6.  Additional frequency analysis and the apparent impact upon the growth of the organism; considerations across the electromagnetic spectrum.


A process of remarkable growth has recently been described within the paper, A New Form: Frequency Induced Disease?12  The project illustrated below is an extension of that finding and it sets the stage for further work in the future.  The spectrum obtained shows that energy absorption by the organism reaches a maximum of approximately 390 nanometers in the visible light range.  This characteristic appears to be a factor in the paper referenced immediately above.  One question that arises from this work is whether or not harmonic frequencies corresponding to this wavelength may also be involved in affecting the growth of the organism.  It may be beneficial, for example, to consider the ideas expressed within the paper entitled “A Look at the Frequencies of Rife-related Plasma Emission Devices” by Charlene Boehm13.

The general ideas expressed within that paper have been applied in the section that is being briefly described here.  One reason to consider harmonic frequencies is that frequencies outside of the visible light range can have either greater or lesser ability to penetrate the skin or internal organs of the human body.  The discoveries and controversies of Royal Raymond Rife in this arena are well known by many.  Another consideration of such frequencies is their ability to either enhance or inhibit, or even destroy, certain organisms or pathogens.  The risks and uncertainties of engaging blindly or in a foolhardy fashion using these methods have been already been clearly stated and will not be repeated here.


See: A New Form: Frequency Induced Disease?


The harmonic frequencies to consider can be arrived at by multiplication or division by increasing powers of two.  The speed of the electromagnetic wave within the medium involved (vacuum, air, liquid, human tissue, etc.) must certainly be a part of the analysis.  The case below shows the application of an electromagnetic wave at approximately 500Hz to a culture medium.  The method of deducing that approximate frequency for application can be discussed at a later time.  The current through the medium was measured at approximately one milliwatt.  


What is clearly demonstrated below is an increased growth rate in the culture, especially in the electrode regions.  An advancement to the filament stage of growth is clearly evident as a result of the current and/or frequency combination. The sensitivity of the process to a change in frequency is simply not known at this time; it is possible that the results may not be as much frequency dependent as they are current induced.  Extensive research on this topic remains a prospect; a multitude of harmonic frequencies and or current combinations may be tested if the equipment becomes available.


electromagnetic culture




7. A spectral method to outline the potential presence of the organism within the blood of an individual and the expected impact upon the blood.


The graphs shown below are of much importance and they will be instrumental to numerous applications in the future.  It is now known that the metabolic process of the organism has a strong dependence on iron.  It is also known that the organism causes serious degradation to the condition of the blood, and the consumption of iron within the blood is most certainly an obvious important factor within the research.  


A thesis is proposed that the influence and impact of the organism upon the blood can be established through the use of spectral analysis.  An example of such influence and impact is shown below.  Nothing presented here is to be interpreted as a diagnostic procedure of any kind, and the disclaimer above is repeated here for emphasis:


Note: I am not offering any medical advice or diagnosis with the presentation of this information. I am acting solely as an independent researcher providing the results of extended observation and analysis of unusual biological conditions that are evident.  Each individual must work with their own health professional to establish any appropriate course of action and any health related comments in this paper are solely for informational purposes and they are from my own perspective.


The approach that is presented here is offered freely to the medical community at large for their consideration in future strategies developed for the mitigation, reduction or elimination of this condition.  While not diagnostic in nature, the detection of the organism within the blood and the impact upon the blood does appear evident as a result of this research.  It will be for the medical community to determine the viability of the method in specific applications.  The purpose here is to summarize the methods and findings; further discussion in detail will again need to be reserved for the future.




This graph shows an overlay between the expected spectrum of hemoglobin (reference spectrum in black) and the spectrum of an individual that shows the presence of the organism under research within the blood.  This organism is the same as that which is subsequently developed into a culture (predominantly filamental) form.


The organism alters the hemoglobin in a very distinctive fashion that is identifiable and repeatable.  Most noticeably, the presence of an anomalous, or unexpected sharp peak in the spectrum occurs at approximately 390 nm.  This peak that appears in such prominent fashion within the affected blood is not expected to be a part of the normal hemoglobin spectrum.  This influence, amongst others, presents itself as an important and viable method for the detection of the organism within the blood of an individual.  There are additional measurable influences upon the spectrum, such as the sharper decline in absorbance in the 430-500 nm range, as well as the diminished absorbance in the 700-900 nm range.  Another consequence of the combination of influences in the spectrum is a shifting of the primary peak in hemoglobin at 414 nm to approximately 425-430 nm.  These changes in the spectrum are anomalous, measurable and repeatable; they will be of much value in future research related to the “Morgellons” condition.


hemoglobin 1

The theoretical reference spectrum for hemoglobin14.  Peaks occur at 414, 542 and 576 nm respectively.

hemoglobin 2

The measured spectrum of the organism in culture form.  This spectrum is identical to that of the environmental and human biological samples that have been discussed in detail on this site.

hemoglobin 3

A representative measured spectrum of hemoglobin that is affected by the presence of the sub-micron organism under study.  Modification of the reference spectrum has been discussed above.


The graphs shown above essentially present the components that combine to produce the altered hemoglobin spectrum discussed above.  The spectra shown here will be the basis of much study and examination in the future.  It has been stated on many occasions that the condition of the blood and the presence of filaments within the body appear to this researcher to be a more accurate method of assessing the presence of the condition.  The use of spectral analyses may allow for a greater level of objectivity in this approach.


8. Indications of increased acidity in correlation with the “Morgellons” condition.  The role of pH in the corrosion rate of iron. The diminished capacity of red blood cells to absorb oxygen in a more acidic environment.


It is known that the organism thrives within an acidic environment.  There is also reason to consider that the organism itself may increase the acidity of the human biological state.  It is also a fact that iron (blood contains iron) corrodes more quickly in an acidic environment.  Lastly, in an increased state of acidity within the human body and blood cells have a diminished capacity to absorb oxygen.  These factors are in addition to the structural damage of the blood by the organism as it has been repeatedly described.


9. The success of growth of the organism in a blood based culture medium.


It has been established that human blood is a productive medium for the growth of the organism in a cultured form.  In the case below, the stock culture solution is prepared using sodium hydroxide (lye) and heat to break down the filaments as has been repeatedly described.  Iron sulfate and peroxide was used to begin the culture process.  Human blood was then introduced into the culture medium to test further growth.  The growth rapidly escalated and immediately established itself in the mature filament form.  The rust color of iron-oxide is again visible.  All testing in all ways to date strongly supports the contention that iron is a primary source of nourishment to the organism.


blood culture


A filament culture developed from human blood as the primary source of nourishment to the culture.


10.  Additional strategies, beyond alkalization and anti-oxidation, to be considered in the mitigation of the growth of the organism.


The statements below may also be of great importance during future research and analysis.  It has already been reported that alkalization of the body and the use of antioxidants may serve a role in the mitigation of the growth of the organism.  This has been described in depth within the papers entitled Morgellons: A Discovery and A Proposal and Growth Inhibition Confirmed16.  Again, no medical advice, diagnosis or therapy of any kind is being provided and all discussions relate to that of observation and analysis only; each individual must consult with their own medical practitioner for health related advice.


The role of the consumption of iron that is now understood more deeply as well as the visible damage to the blood leads us to consider additional strategies that may be of a more proactive nature in the mitigation of growth of the organism.  We are now able to ask additional questions in a more forthright fashion, and seek those answers:  


1. What is it that will allow for greater absorption of iron by the body?  Conversely, what compounds may act to inhibit the absorption of iron by the body?


2. What is it that might inhibit iron-eating bacterial-archael forms (or modifications thereof) in a manner that will allow existing iron to be more fully utilized in the body?   


These questions are the genesis for potentially fruitful discussions in the future, in addition to those of alkalinity and anti-oxidation that have been established.  We may, at this point, at least begin the discussion.


One answer to the first question involves Vitamin C.  Vitamin C increases absorption of iron in the body17.  Vitamin C is also essential in the production of hemoglobin18.  It is also of interest that Vitamin C is also an antioxidant, and plays an important role in paper most recently referenced.  But in addition to being an anti-oxidant, Vitamin C also can improve the absorption of iron by the body.  There are now two important reasons that Vitamin C may be considered in the development of strategies to inhibit or mitigate the growth of the organism.  Facilitators for iron absorption are stated to include ascorbate, citrate and amino acids.  Inhibitors in iron absorption are stated to be phytates, tannins, soil clay and antacids for example19.


Lastly, let us introduce an initial response to the second question; this consideration also leads us to many interesting avenues of discussion for the future.  There is indeed a certain protein, commonly found in mother’s milk, than inhibits the growth of iron-dependent bacteria in the gastrointestinal tract20.  The name of the protein is lactoferrin.  Although this paper is not to be a discussion on the topic of breastfeeding, the constituents of human milk become immediately relevant to the research at hand.  The anti-bacterial properties of human milk, (i.e., especially with respect to the iron situation) are extremely important for our consideration here.  The mechanism involved in the defense is the binding of the iron with the lactoferrin protein21, and this prevents the more direct consumption by the iron-eating bacteria (or potential modification thereof).  This is the principle of a chelate.


The obvious manner in which to end this discussion for now is to ask whether there are any commonly sources of lactoferrin available to humans beyond the infant stage.  The research at this time indicates at least one available source – whey21,22.  Concentration levels in various sources as well as their efficacy will be major points of consideration in the future.  Culture trials will eventually measure the impact of this protein and compound upon growth rates, in combination with the additional strategies that have been outlined previously.  Initial results are encouraging.   A recent comment sent independently to the Institute by a medical professional supports the prospective benefits outlined with respect to lactoferrin, and this suggestion is appreciated.




Edit Jun 13 2011:


Two additional strategies also now evolve as a result of synthesizing the accumulated observations and analyses of this research.  The first of these is to improve the flow of bile and the second is to detoxify the liver.  The bile plays an extremely important role in the alkalizing of the body and in the digestive process.  The liver is incredibly important with respect to the removal of toxins and the digestion of lipids (fats).  Please refer to the following set of videos for preliminary information on these two subjects:


Gallstones, Liver, Gallbladder, Kidney Cleanse Part 1
Gallstones, Liver, Gallbladder, Kidney Cleanse Part 2
Gallstones, Liver, Gallbladder, Kidney Cleanse Part 3
(no product endorsement or promotion by this site; educational purposes only)

[“Gallstones, Liver, Gallbla…” The YouTube account associated with this video has been terminated due to multiple third-party notifications of copyright infringement.12/13/15]


In summary, a total of six strategies have now evolved that  may demonstrate or show some degree of effectiveness in the mitigation or reduction in the growth of the organism.  They are:


1. Alkalization.


2 Anti-oxidation.


3. Increasing the utilization and absorption of existing iron.


4. The inhibition of the growth of iron-consuming bacteria (and bacterial-archeal like) forms.


5. Improving the flow of bile in the system to further alkalize the body and aid the digestive system.


6. Detoxification of the liver (toxin removal and breakdown of lipids (fats)).


Each of these strategies have developed through direct research, study, analysis,  and/or observation within a laboratory environment.  They are each offered to the medical and health community for consideration and evaluation as they apply to the human condition.




This particular paper represents only a summary view of the topics that are deemed worthy of pursuit by this researcher and the Carnicom Institute.  Additional discussion or presentation will occur as time and circumstance permit.  If you wish to contribute more directly to the research and/or contribute resources to this cause, please contact the Carnicom Institute.






Clifford E Carnicom
(born Clifford Bruce Stewart Jan 19 1953)





1. Titanic-Resting-or-Reacting, Sarah Don, 2008.

2. A Mechanism of Blood Damage, Clifford E Carnicom, Dec 2009.

3. Morgellons: A Discovery and a Proposal, Carnicom, Feb 2010.

4. Morgellons: A New Classification, Carnicom, Feb 2010.

5. Metal-Eating Bacteria Corrode Pipes in Oil Industry, Access Excellence, 2004.

6. Iron Eating Bacteria Deciphered, Gauntlet, 2004.

7. Blood Diseases : Anemia, University of Maryland Medical Center, 2011.

8. Artificial Blood?, Carnicom, Aug 2009.

9. Blood Issues Intensify, Carnicom, Apr 2009.

10.Morgellons: A Status Report, Carnicom, Oct 2009.

11.The Biggest Crime of All Time, Carnicom, Mar 2011.

12. A New Form: Frequency Induced Disease?, Carnicom, Mar 2011.

13. A Look at the Frequencies of Rife-related Plasma Emission Devices by Charlene Boehm, 1999.

14. Optical Absorption of Hemoglobin, Scott Prahl, Oregon Medical Laser Center.

15. Ultraviolet and Visible Spectroscopy, 2nd Edition, Michael Thomas, John Wiley & Sons, 1996, p. 20.

16. Growth Inhibition Confirmed, Carnicom, Mar 2010.

17. How to Increase Iron Absorption, Kristie Leong, MD.

18.  Iron Deficiency Anemia, National Insitutes of Health.

19. Iron Absorption, Harvard University.

20.What’s in Breast Milk? American Pregnancy Association.

21. The Truth About Iron While Breastfeeding, Gwen Morrison.

22. Protein Powders, Abstract (informational only-no product support).